1º FASE	Questa 17	.0	DIA 19/1		Curso e Colégio	OFICINA DO ESTUDANTE
		Em 12 de maio de 2017 o Metrô de São Paulo trocou 240 metros de trilhos de uma de suas linhas, numa operação feita de madrugada, em apenas três horas. Na solda entre o trilho novo e o usado empregou-se uma reação química denominada térmita, que permite a obtenção de uma temperatura local de cerca de 2.000 °C. A reação utilizada foi entre um óxido de ferro e o alumínio metálico. De acordo com essas informações, uma possível equação termoquímica do processo utilizado seria				
		a) $Fe_2O_3 + 2AI$	→ 2	Fe + Al ₂ O ₃	; $\Delta H = + 852 \text{ kJ-mol}^{-1}$.	
		b) FeO ₃ +AI	→ F	e + AlO ₃	; $\Delta H = -852 \text{ kJ-mol}^{-1}$.	
		c) FeO ₃ + Al	→ F	e + AlO ₃	; $\Delta H = + 852 \text{ kJ-mol}^{-1}$.	
		d) Fe ₂ O ₃ + 2AI	→ 2	Fe + Al ₂ O ₃	; $\Delta H = -852 \text{ kJ-mol}^{-1}$.	
Alternativa Correta	D				Curso e Colégio	OFICINA

O Ferro possui duas valências conhecidas, $Fe^{2+}e$ Fe^{3+} enquanto que o oxigênio, como óxido, apresenta valência O^{2-} portanto o óxido de ferro pode ser FeO ou Fe_2O_3 .

O texto descreve a reação da térmita, obtendo-se uma temperatura de 2.000°C sendo portanto um processo exotérmico.

 $Fe_2O_3 + 2AI \rightarrow 2Fe + AI_2O_3$ $\Delta H = -852kJ/mol$